
Quality Issues

Jean Charles Salvin
jesi04@student.bth.se

Sebastian Stein
sest04@student.bth.se

Abstract

The term quality has many faces. In different product ty-
pes different quality attributes might be considered to be im-
portant. The same problem might occur while changing the
perspective between market-driven and bespoken software
development. This report analyses this dependency. In this
context it will be discussed if software is more like goods
or services. It will be shown as well how to apply quality
tools in software development, which are normally used for
goods and services. Finally, the supply process in softwa-
re development will be discussed taking quality issues into
account.

1. Introduction

In a video game performance is one of the main quality
requirement. For a controller in a car break system, reliabi-
lity and safety are much more important than performance.
This little example shows the importance of quality attri-
butes depends on the system to be developed. Before dis-
cussing this subject, first a list with common software qua-
lity attributes is needed. It is presented in the next section
as well as a discussion how the identified quality attribu-
tes differ from quality attributes of goods and services. In
the following section quality attributes are called quality di-
mensions.

2. Quality Dimensions

Bergman et al. [1, p. 31ff] describe several quality di-
mensions for goods and services. They do not show how
those quality dimensions relate to software.

By combining [7, p. 121ff] and [2, p. 89ff] the authors
created a list with common quality dimensions used in con-
text of software:

• Usability

• Performance

• Reliability

• Portability

• Interoperability

• Safety

• Security

• Maintainability

However, this list is not complete, someone can always
add other software quality dimensions. The authors believe
the list above reflects the most important software quality
dimensions according to standard software engineering lite-
rature1. In the following sub-sections, the authors will dis-
cuss where the quality dimensions of software, goods and
services differ and their similarities. In a final sub-section,
a discussion is presented if software is more like goods or
services in a quality context and what can be learned from
more mature industries.

2.1. Comparison Software Quality and Quality of
Goods

Some similarities can be found between software quality
and quality of goods:

Usability: In software as goods, the complexity level
shown to the user is essential. If it is too difficult, nobo-
dy will be able to use it. Quality in software resides in the
fact, that it is easy to use or not.

Taking the example of a text editor software and a wa-
shing machine, similarities in context of usability can be
found. In a text editor software, if there are too many opti-
ons, buttons or if someone has to follow too many steps to
get something done, the usability is considered to be poor.
For the washing machine, if there are too many options or
buttons, sometimes someone might also get lost. In both ca-
ses automatisms are needed, so that the user do not have to
guide every action.

1e. g. [7]



Maintainability: For a software it is crucial that it can
be maintained during the life-cycle. The same is true for a
good. For a good it might be the case, that it must be chan-
ged during the life-time to adapt to changing laws like safety
at work laws. In case of software it might also be needed to
change the software according to altered tax laws.

Performance: Performance is important for goods as
well as software. Often the user judges the overall quality
of a software by his performance experiences with the
software. A more performant software is considered to
have higher quality. The same is true in case of goods. For
example a copier copying 20 copies per minute will be
considered to have a higher quality then a copier with just
5 copies per minute.

Besides similarities, there are also some differences:

Appearance: For a good the appearance is an important
factor, since some customers will base their buying decision
on the appearance of the product. In software appearance
is normally not considered. Of course, the graphical user
interface has to follow certain rules, but this is more an issue
of usability, since all applications should follow the same
usability guidelines.

Environmental impact: There is a big difference of im-
pact between software and a good on the environment. Nor-
mally a software or the production of a software has no im-
pact at the environment at all. In contrast, the effects to en-
vironment by goods and their production processes must be
considered.

Flawlessness: Since goods are often not as complex as
software, it is possible to release them without any flaws.
There are well known techniques available to check a pro-
duct for quality problems. The same is not true for software.
It is nearly impossible to release a software without bugs,
even in simple applications. The authors experienced this
several times by themselves.

2.2. Comparison Software Quality and Quality of
Services

Similarities can be found between software quality and
quality of services:

Tangibility: When comparing tangibility of software and
services, it can be stated that both are not tangible at all. It
might be possible to touch a consultant, but the consultant
is not the service, because the service is the task performed

by the consultant. In software, this is similar as it is impos-
sible to take software in hands. It is possible to touch the
computer the software is running on, but not the software.

Communication: One has to communicate with a soft-
ware as well as with a representative of a service. In softwa-
re user interfaces are used. User and interface must use the
same language, for example it is impossible for an user to
understand binary code. In services high quality communi-
cation is a key success factor.

Reliability: Software has to be reliable. It has to be
available (no crashes), the performance should not decrease
during runtime and the same input should always lead to
the same output2. A service has to be also reliable, the
service must be done continuously and as defined in the
contract.

Besides similarities, there are also some differences:

Access: A service must be easily and every time acces-
sible. Unfortunately this might not be possible, because a
consultant might be on holiday or unavailable. In contrast
a software is always accessible. It can be launched on user
request.

Credibility: A service is provided by human beings and
companies. Someone can trust a human. Also a human
being can take responsibility. A software can not, becau-
se a software can not decide how to perform an action. The
execution is determined by the source code. Therefore it is
impossible for a software to act for credibility.

Courtesy: As the previous statement, there is a difference
between a supplier courtesy and a software courtesy. No-
body expects a software to be polite or not. This is not an
attribute of a software.

2.3. Summary

In the previous sub-sections, the authors compared soft-
ware quality with quality of goods and services. There are
similarities, but also major differences. A discussion if soft-
ware is in context of quality more like goods or services is
meaningless. Someone has to accept software is something
different. But that does not mean to not take best practices
for quality of goods and services into account. For exam-
ple the 7 quality tools [1, see p. 216ff] can be applied in
software development as shown in section 6 on page 4.

2e. g.1 + 1 = 2 for a calculator

2



3. The 4 Quality Movement Phases in Context
of Software Development

Bergman et al. [1, p. 91ff] explain the quality movement
with 4 phases. The phases take place at different stages in
the development process (at the end, during, before, . . . ). It
is possible to find a similar mapping for software enginee-
ring as well. Nevertheless, it must be clearly stated, that this
mapping is based on a subjective interpretation.

To be able to do this mapping, a software process must
be used for referring. The authors have chosen the classical
waterfall approach [7, p. 66ff] for this section. This pro-
cess consists of the phases analysis, design, implementation
(production), and test.

One of the 4 quality movement phases is quality inspec-
tion. Quality inspection is done at the end of the production
step. In software development, the code tests and integra-
tion tests are usually done after the implementation step in
the test phase.

Another quality movement phase is quality control. This
phase is done during production to identify first signs of
possible defects and fix them immediately. To prevent co-
ding bugs in software development, one can use coding
standards and structured or object-oriented programming
techniques.

Quality assurance tries to prevent problems and quality
flaws even before production starts. This can be found in
software development as well. For example one can apply
test-driven development. Here the unit tests are written first
before the implementation is done. Another possibility to
ensure high quality even before implementation is to use
requirements engineering [5, see e. g.] to elicit the user’s
needs and to keep track of those requirements and possible
changes during the rest of the development project.

The final phase of quality movement is to have a con-
tinuous process. This phase is called quality management.
In software development quality models like CMM and
ISO 9000 try to ensure steady improvements throughout the
whole software process.

4. Quality in Mass-market and Bespoke Pro-
ducts

Bergman et al. focus in their book [1] mainly on quali-
ty in mass-market production. Nevertheless, quality issues
must be also considered in bespoken projects. Here quality
is as important as in mass-market products.

There are some differences dealing with quality issues in
both product types. For example it might be easier to ex-
actly define the required quality level for the different attri-
butes in a bespoke project. Indeed a close interaction with
the customer is possible. In a mass-market production, the

customer can mostly not be consulted directly. Thus, the
software vendor has to make assumptions about the needed
quality level. Using techniques like market analysis and cu-
stomer surveys can improve this problem.

Releasing a low quality product to the mass-market may
have bigger drawbacks then releasing a low quality product
to a single customer in a bespoke project. Indeed, the infor-
mation about the low quality of the product might spread
quickly through the market, whereas a single customer may
not be able to communicate the quality problems to many
other customers. In our days, quality problems of market
products are reported in media like internet, television or
radio. If for example a car producer has to call back cars,
this is often reported in daily news. Webpages present the
opinions of several people about certain products. For a po-
tential customer, it is easy to check what other people think
about the product in general and in context of quality.

The required levels for the different quality attributes
might differ if the same product is developed for mass-
market and for a single customer. In mass-market, it is im-
portant to have certain basic level for all quality require-
ments. So the software will be experienced as high quali-
ty by many customers. In a bespoken project, the software
can be optimised to have a highly level of quality in some
quality attributes like performance or reliability. The deve-
lopment can focus on the quality attributes mostly deman-
ded by the customer. This means that in a bespoken project,
trade-offs between different quality attributes can be done
depending on the customer’s agreement. In a mass-market
project, this is much more complicated, because different
users will have different needs on a single product. For ex-
ample, the authors see security as a crucial qualitative re-
quirement for operating systems, but other users might pay
more attention to performance or usability.

5. Quality in different Software Systems

The importance of quality attributes is different depen-
ding of the developed system. In the following sub-sections,
3 different examples will be presented. The examples are
used to discuss the differing importance of quality attribu-
tes.

5.1. Example 1: End-user Desktop Application

In case of an end-user desktop application like a CD-
ROM burning application, an encyclopedia or an Internet
browser, the following quality attributes are most important
in the authors’ opinion:

• Usability

• Interoperability

3



• Security

This type of software is used by many different users,
who have different knowledge and skills. However, every-
body should be able to use the software. This implies that
the usability of the software must be very good.

Interoperability seems also highly important, so that the
outputs produced by one application can be used in another
one3. Typically, a desktop environment consists of several
applications. The combination of those applications give the
user a powerful tool to solve his daily work.

As many inexperienced people are using this type of soft-
ware, it is important that the software provides a certain le-
vel of security. Indeed, end-users do often not have the ne-
cessary knowledge to deal with security issues. People are
often managing confidential data4 with such applications. It
is in the very interest of the user, that this data is secured.

5.2. Example 2: Video Game

Even if video games are mostly used by the same user
group as described in the section above, the most important
quality attributes are other ones:

• Performance

• Maintainability

• Usability

Video games should be fun to use and this means that
they have to be very fast. Also it is important that the game
also runs on slightly5 outdated hardware.

After a video game gets released, often updates must be
deployed to fix bugs. Besides fixing bugs, the software ven-
dor might also like to add new functionality6, if a game turns
out to be very successful. Therefore it is crucial that the ga-
me can be easily maintained.

Usability remains also a key point in the authors’ opini-
on, since it should be possible to use a video game without
reading the manual. This also means the game must be easy
to install and maybe some tutorial missions must be provi-
ded.

5.3. Example 3: Embedded Control System

Embedded control systems are software integrated to
machines. Common examples are software integrated into
cell phones, washing machines and process controllers in a
(chemical) factory. The authors think the following quality
attributes are most important:

3e. g. copy-paste of text between different application
4e. g. online banking
5hardware not older then 2 years
6e. g. expansion packs, new scenarios, new campaigns

• Reliability

• Safety

• Security

This type of software is very much related to common
life. The infrastructure of a society relies on this type of
software, e. g. electricity, water or gas. There is normally
no direct end-user for this software. Nobody is aware of the
software as long it is working properly.

Reliability and safety quality seem obvious as they affect
humans’ common life. Humans rely on this kind of softwa-
re for their safety. For example, if while driving a car the
breaks are not functioning because of a software bug, the
driver has a serious problem.

In recent times security became another important quali-
ty attribute for this kind of software. Societies rely so much
on such software, that such systems are a valuable target for
terror attacks. Of course everything must be done to prevent
such attacks.

6. The 7 Quality Tools in Software Projects

The 7 quality tools are described in Bergman et al.’s book
[1, p. 216ff] chapter 10. In this section the authors show how
the presented tools can be used in software projects. The au-
thors never saw those tools applied in their work experience,
but they think it might be valuable to use the presented tools.

6.1. Data Collection

The 7 tools presented by Bergman et al. are statistical
methods. Before a statistical method can be used, data is
needed. Therefore the first tool [1, p. 217ff] collects the ne-
cessary data and provides it for further investigations.

Data can be collected during all phases of software deve-
lopment. It is possible, for example, to collect the following
data:

• number of new and changed requirements

• value of fulfilled/implemented requirements

• number of classes, components, functions, etc.

• number of identified and fixed bugs (bug reports)

• number of failed test cases

• number of produced and changed lines of code

• numbers to measure project progress (see [6, p. 340ff])

4



It is important to only select the necessary data. Here it is
a great advantage, if the data can be exported from tools al-
ready used during software development, because then not
much extra effort is needed for data collection. The followi-
ng tools might provide data:

• requirements engineering databases

• CASE tools or UML tools

• bug tracking database

• test framework

• version control system

• project management tool

6.2. Histograms

Histograms [1, see p. 220ff] are used to group data into
categories. This is useful, if the analysis of all data points
is not possible, because of the amount of the data. In such
cases it is interesting to group the data, e. g.:

• number of change requests per week

• number of fixed bugs per week

It is also possible to create groups for different parts of
the developed system:

• number of identified defects per component

• number of changes to certain classes (an often changed
class might be too huge or may have a bad design [4,
idea is presented here])

6.3. Pareto Charts

Pareto charts [1, p. 222ff] are a tool to visualise the cur-
rent biggest problem in a project. This can be done by first
listing all problems and their estimated costs/impacts in a
pareto chart. Project management should try to first first sol-
ve the problem with the biggest associated costs.

It may be also possible to use pareto charts to decide
which requirement should be implemented first. To do this,
someone has to put the requirements with their relative pro-
fits in a pareto chart. The relative profits can be calculated
using the following formula:

relative profit = earnings for requirement/costs

If possible first the requirement with the highest relative
profit should be selected for development, if no other cons-
traints have an influence on the decision. A problem might
occur, if the requirements are not on the same level, e. g. if
one requirement would cause costs of 10.000 SEK and ano-
ther 100.000 SEK. Then a comparison as described above
is not meaningful.

6.4. Cause-and-effect Diagrams

It is the task of a software developer to find solutions
for given problems. Therefore, software developers have al-
ready knowledge to identify the problems’ cause. Neverthe-
less, the use of structured techniques like cause-and-effect
diagrams [1, p. 224ff] might be powerful tools in some ca-
ses.

Assuming there is a connection problem between a client
and a server, which are not located on the same machine.
There can be several causes for that, e. g. a broken physical
network connection, server not listening to the interface the
client is connected to or the client might not have enough
access rights to connect to the server.

Those possible causes can be drawn in a cause-and-effect
diagram. Furthermore, it is possible to decompose the cau-
ses in sub-causes. Someone working to fix this problem can
use the cause-and-effect diagram to identify the actual cau-
se in a structured way. It is also possible to provide cause-
and-effect diagrams as a general work instruction for ser-
vice personal. A service worker can check the most com-
mon reasons for a problem by having a quick view at the
cause-and-effect diagram.

6.5. Stratification

A histogram7 might show that during the last week, se-
veral new bugs were reported. It might be interesting to find
out, if most of the bugs were identified in a certain modu-
le, component or sub-system, because this can mean a bad
design of this part of the system. Therefore the correspon-
ding histograms of the different modules, components or
sub-systems must be compared. Bergman et al. [1] call this
change of the abstraction levelstratification. The authors
have seen similar techniques in decision support systems.
There the action of changing the abstraction level is called
drill-down.

6.6. Scatter Plots

The use of scatter plots [1, p. 230f] could be questioned
in context of software development, because it is only useful
if the value of a variable depends on just one single factor.
Software development is a complex task and in the authors’
opinion it is not possible to build such simple relationships.
However, in some special cases or on a highly abstraction
level, it might be possible to use the technique. For exam-
ple one can plot the dependencies between found defects
and number of inspections. More inspections should iden-
tify more defects, but at some point an asymptote might be
reached and more inspections do not reveal more defects.

7see section 6.2 on page 5

5



6.7. Control Charts

As shown in section 6.1 on page 4, it is possible to col-
lect a lot of different data during software development and
to create quality indicators based on the data. By adding an
upper and lower control limit, one creates control charts [1,
p. 231ff]. Control charts are useful as an indicator if some-
thing is going wrong. A control chart only shows that there
might be a problem, but it does not show where the pro-
blem is. Other techniques and tools must be used to inves-
tigate the problem further. Control charts are a very useful
tool for project managers to monitor the overall status of a
project. However, since the control charts can only analyse
measure-able data, the project manager has to also moni-
tor the soft-factors of a project like state of the team spirit,
customer satisfaction, commitment, etc.

7. Supply Process in Software Development

Supply Chain Management is usually defined as a net-
work of facilities to provide the following functions: mate-
rials procurement, transformation of those input materials
during production into products and distribution of the pro-
ducts to the customers [3, see for more details].

Analysing this definition, the following 3 parts of the
supply chain can be identified: procurement, production,
and distribution.

Bergman et al. [1, p. 283] focus in their description only
on the procurement part of the supply chain. They describe
how to design the relationship with the supplier and what
techniques should be used to check the quality of supplied
components.

It is not clear to the authors, if it is meaningful to define a
supply chain for software development. For example it must
be asked what a software vendor can procure before softwa-
re development starts. There is also no explicit production
step in software development. The distribution of softwa-
re can be easily done by using common sale channels and
general marketing methods.

For procurement, the authors think that it is today com-
mon to acquire specifications. The authors experienced that
in bespoke product development, a consulting company for-
mulates the specification of a future software product. This
specification is used by the software vendor to extract the
requirements and to develop the software accordingly. The
consulting company often has in such cases only a relati-
onship to the customer and not to the software vendor. Of
course it would be beneficial, if the software vendor can de-
sign a long-term relationship with the consulting company,
so that the software vendor is often chosen to realise a spe-
cification.

Using external resource might be possible during the
implementation phase of software development. For exam-

ple, the implementation can be completely handed over to
a company in a low salary country. This activity is called
outsourcing. To do successful outsourcing, it is important
to have a good relationship with the contract company. The
communication between both companies must be ensured.
It might also be beneficial, if software vendor and contract
company use similar design methods, documentation stan-
dards and software processes. Outsourcing can create a big
risk, if the outsourcer is not doing high quality work. In this
case the software vendor has to pay for the quality problems
produced by the outsourcer.

Another possibility during the implementation step is
to use commercial off-the shelf (COTS) components [7,
p. 429ff]. Those components can be used instead of de-
veloping the functionality by oneself. Typical widely used
COTS are database servers, application servers, and class
libraries.

Nevertheless, using COTS can be problematic in context
of quality [7, p. 431]. The software vendor can not control
the development process of the COTS. He must rely on qua-
lity checks like tests after the COTS were released.

It might be possible to solve this problem with having a
close relationship to the COTS vendor, but it might not be
possible in all cases to build this relationship, since COTS
are often mass-market products.

8. Conclusions

Software is different from goods and services. Neverthe-
less, there are some similarities. The needed software quali-
ty attributes differ for bespoke and market-driven develop-
ment. The same is true for different kinds of systems. It is
possible to apply statistical quality tools during software de-
velopment and the supply chain concept can be used in soft-
ware development.

Literatur

[1] B. Bergman and B. Klefsjö. Quality: from Customer Needs to
Customer Satisfaction. Studentlitteratur, Lund, 2003.

[2] J. Bosch.Design & Use of Software Architectures: Adopting
and evolving a product-line approach. Addison-Wesley, Lon-
don, 2000.

[3] S. Chopra and P. Meindl.Supply Chain Managment: Strategy,
Planning and Operation. Prentice Hall, 2001.

[4] S. Diehl. Softwarevisualisierung. Informatik Spektrum,
26(4):257–260, 2003.

[5] G. Kotonya and I. Sommerville.Requirements Engineering:
Processes and Techniques. Wiley, Chichester, 2004.

[6] J. M. Nicholas.Project Management for Business and Engi-
neering. Elsevier Inc., Burlington, MA, 2004.

[7] I. Sommerville. Software Engineering. Pearson, Boston, 7th
edition, 2004.

6


